domingo, 20 de março de 2011

Redes

Placa de rede

Uma placa de rede (também chamada adaptador de rede ou NIC) é um dispositivo de hardware responsável pela comunicação entre os computadores em uma rede.
A placa de rede é o hardware que permite aos computadores conversarem entre si através da rede. Sua função é controlar todo o envio e recebimento de dados através da rede. Cada arquitectura de rede exige um tipo específico de placa de rede; sendo as arquitecturas mais comuns a rede em anel Token Ring e a tipo Ethernet.

Hub

O hub é um dispositivo que tem a função de interligar os computadores de uma rede local. Sua forma de trabalho é a mais simples se comparado ao switch e ao roteador: o hub recebe dados vindos de um computador e os transmite às outras máquinas. No momento em que isso ocorre, nenhum outro computador consegue enviar sinal. Sua liberação acontece após o sinal anterior ter sido completamente distribuído.
Em um hub é possível ter várias portas, ou seja, entradas para conectar o cabo de rede de cada computador. Geralmente, há aparelhos com 8, 16, 24 e 32 portas. A quantidade varia de acordo com o modelo e o fabricante do equipamento.


Roteadores

O roteador (ou router) é um equipamento utilizado em redes de maior porte. Ele é mais "inteligente" que o switch, pois além de poder fazer a mesma função deste, tam
bém tem a capacidade de escolher a melhor rota que um determinado pacote de dados deve seguir para chegar em seu destino. É como se a rede fosse uma cidade grande e o roteador escolhesse os caminhos mais curtos e menos congestionados. Daí o nome de roteador.

Existem basicamente dois tipos de roteadores:

Estáticos: este tipo é mais barato e é focado em escolher sempre o menor caminho para os dados, sem considerar se aquele caminho tem ou não congestionamento;

Dinâmicos: este é mais sofisticado (e consequentemente mais caro) e considera se há ou não congestionamento na rede. Ele trabalha para fazer o caminho mais rápido, mesmo que seja o caminho mais longo. De nada adianta utilizar o menor caminho se esse estiver congestionado. Muitos dos roteadores dinâmicos são capazes de fazer compressão de dados para elevar a taxa de transferência.

Ponto de Acesso

Access Point ou AP ou em Português Ponto de Acesso é um dispositivo em uma rede sem fio que realiza a interconexão entre todos os dispositivos móveis. Em geral se conecta a uma rede cabead
a servindo de ponto de acesso para uma outra rede, como por exemplo a Internet.
Vários pontos de acesso podem trabalhar em conjunto para prover um acesso em uma área maior. Esta área é subdividida em áreas menores sendo cada uma delas coberta por um ponto de acesso, provendo acesso sem interrupções ao se movimentar entre as áreas através de roaming. Também pode ser formada uma rede ad hoc onde os dispositivos móveis passam a agir intermediando o acesso dos dispositivos mais distantes ao ponto de acesso caso ele não possa alcançá-lo directamente.

Wireless

Uma rede sem fio refere-se a uma rede de computadores sem a necessidade do uso de cabos – sejam eles telefónicos, coaxiais ou ópticos – por meio de equipamentos que usam radiofrequência (comunicação via ondas de rádio) ou comunicação via infravermelho, como em dispositivos compatíveis com IrDA. É conhecido também pelo anglicismo wireless.
O uso da tecnologia vai desde transceptores de rádio como walkie-talkies até satélites artificais no espaço. Seu uso mais comum é em redes de computadores, servindo como meio de acesso à Internet através de locais remotos como um escritório, um bar, um aeroporto, um parque, ou até mesmo em casa, etc.
Sua classificação é baseada na área de abrangência: redes pessoais ou curta distância (WPAN), redes locais (WLAN), redes metropolitanas (WMAN) e redes geograficamente distribuídas ou de longa distância (WWAN).

Switch

O switch é um aparelho muito semelhante ao hub, mas tem uma grande diferença: os dados vi
ndos do computador de origem somente são repassados ao computador de destino. Isso porque os switchs criam uma espécie de canal de comunicação exclusiva entre a origem e o destino. Dessa forma, a rede não fica "presa" a um único computador no envio de informações. Isso aumenta o desempenho da rede já que a comunicação está sempre disponível, exceto quando dois ou mais computadores tentam enviar dados simultaneamente à mesma máquina. Essa característica também diminui a ocorrência de erros (colisões de pacotes, por exemplo).



Pc Card

PC Card é um barramento destinado aos computadores portáteis (notebooks e laptops), desenvolvido pela PCMCIA (Personal Computer Memory Card International Association), com um conjunto de mais de 300 fabricantes, onde se estabeleceu os padrões para os cartões adaptadores e de expansão para notebooks e laptops.
Um cartão PCMCIA usa de 68 conectores, sendo ainda mais caro que o ISA. Apesar dos padrões, a indústria flexibilizou demais a arquitectura, de forma que alguns cartões podem não ser compatíveis com algum equipamento ou outro. Os cartões também possuem o recurso de ser "Ligar e Usar". Dele derivou o formato CompactFlash, que recebeu este nome justamente por ser uma versão reduzida do PC Card.






quinta-feira, 17 de março de 2011

Endereçamento IP

Endereçamento IP
Cada dispositivo conectado a uma rede TCP/IP é identificado por um único endereço IP. Se um computador tiver múltiplos adaptadores de rede, cada um terá o seu próprio endereço IP. Este endereço, é representado em notação decimal pontilhada, isto é, como o valor decimal de cada octeto (oito bits ou um byte) do endereço separado por um ponto.

Exemplo de endereço IP: 192.168.1.100

Como os endereço IP identificam dispositivos numa rede, deve ser atribuído um endereço IP exclusivo a cada dispositivo na rede.
Embora um endereço IP tenha um único valor, ele contem dois tipos de informação identificador de rede e identificador de host do seu computador.


Identificador de rede - dentifica os sistemas que estão localizados na mesma rede física. Todos os sistemas na mesma rede física devem ter o mesmo identificador de rede, que deve ser exclusivo na interligação de redes.

Identificador de host - identifica uma estação de trabalho, um servidor, um router ou outro TCP/IP numa rede. O endereço de cada dispositivo deve ser exclusivo para aquele identificado na rede.


Um computador conectado a uma rede TCP/IP utiliza o identificador de rede e de host para determinar que pacotes devem receber ou ignorar, bem como determinar o escopo (alvo/objectivo) das suas transmissões (apenas comutadores com o mesmo identificador de rede aceitam mensagens de difusão ao nível IP entre si).
As redes que se conectam à internet publica devem obter um identificador de rede oficial do centro de informações de rede Internet (inter NIC, internet, Network information Center) para garantir a exclusividade do identificador da rede IP.
Após receber um identificador de rede, o administrador da rede local deve atribuir identificadores de host exclusivos para os computadores da rede local. Embora as redes privadas que não estejam conectadas à Internet possam utilizar seu próprio identificador de rede, obter um identificador de rede válido no inter NIC permitirá que uma rede privada seja conectada à Internet no futuro, sem atribuir um endereço novamente.

A comunidade Internet definiu classes endereço para acomodar redes de tamanhos diversos. A classe de endereço pode ser reconhecida no primeiro octeto de um endereço IP.
A tabela abaixo resume a relação entre o primeiro octeto de um determinado endereço, e seus campos de identificação de rede e de host.
Identifica também o número total de identificadores de rede e de host para cada classe de endereço que faz parte do esquema de endereçamento da Internet. Este exemplo utiliza w.x.y.z para designar os bytes do ende
reço IP.

Os endereços de classe A tem o bit de mais alta ordem sempre 0
Os endereços de classe B tem os dois bits de mais alta ordem 10
Os endereços de classe C tem os três bits de mais alta ordem 110




Classe A: O primeiro número identifica a rede, os demais três números indicam a máquina. Cada endereço classe A consegue endereçar até 16.777.214 máquinas.
P.Ex: 124.95.44.10
124.96.40.23
124.99.33.15



• Classe B: Os dois primeiros números identificam a rede, os dois demais identificam a máquina. Esse tipo de endereço consegue endereçar até 65.534 maquinas em uma rede.
P.Ex: 151.10.13.28
151.10.40.11
151.10.44.15




• Classe C: Os três primeiros números identificam a rede, o último indica a máquina. Com isso consegue-se endereçar até 254 máquinas.
P.Ex: 201.110.213.28
201.110.213.29
201.110.213.30



Máscaras de Sub-Rede

As máscaras de sub-rede são valores de 32 bits que permitem que os destinatários de pacotes IP distingam o número do identificador de rede do endereço IP do host.
Por exemplo, quando o endereço IP é 194.157.57.27 e o host e a máscara de sub-rede é 255.255.255.0, o identificador de rede é 194.157.57 e o de host é 27.

Como a classe de um host é facilmente determinada, configurar um host com uma máscara de sub-rede pode parecer redundante. Mas as máscaras de sub-rede são utilizadas também para maior segmentação de um identificador de rede atribuído, entre diversas redes locais. Às vezes, apenas parte de um octeto precisa ser segmentada, utilizando-se apenas alguns bits para especificar identificadores de sub-rede e o mesmo identificador de rede.



As máscaras de rede padrão são:

• Classe A: 255.0.0.0

• Classe B: 255.255.0.0

• Classe C: 255.255.255.0


Regras básicas para endereçamento IP

Existem algumas regras gerais que devem ser seguidas quando se aplica endereços a host ou redes, principalmente se este host ou essa rede se encontram ligadas à Internet.

Endereço 127 é reservado para teste (look-back) e comunicação interprocessos no computador local; não é um endereço de rede válido.

Os endereços 224 e superiores são reservados para protocolos especiais (IGMP – difusão limitada de Protocolo de gestão de grupos Internet e outros), e não podem ser utilizados como endereço de host.

O endereço 255 (todos os bits on) não deve ser usado nem para host nem para rede, pois ele é interpretado como broadcast (é um endereço IP que permite que a informação seja enviada para todas as maquinas de uma LAN, MAN, WAN e TANS, redes de computadores e sub-redes).

O endereço 0 (todos os
bits off) também não deve ser usado, ele interpretado como endereço de rede somente.

- O endereço de um host deve ser único para uma rede
.

domingo, 20 de fevereiro de 2011

Tipos de transnessao sem fios

Ondas Infravermelho

A radiação infravermelha (IV) é uma radiação não ionizante na porção invisível do espectro eletromagnético que está adjacente aos comprimentos de onda longos, ou final vermelho do espectro da luz visível. Ainda que em vertebrados não seja percebida na forma de luz, a radiação IV pode ser percebida como calor, por terminações nervosas especializadas da pele, conhecidas como termorreceptores.

Esta radiação é muito utilizada nas trocas de informações entre computadores, celulares e outros eletrônicos, através do uso de um adaptador USB IrDA.

Ondas Laser

O termo "laser" redireciona para este artigo. Para a embarcação do mesmo nome, ver Laser (vela).

Amplificação da Luz por Emissão Estimulada de Radiação) é um dispositivo que produz radiação eletromagnética com características muito especiais: ela é monocromática (possui comprimento de onda muito bem definido), coerente (todas as ondas dos fótons que compõe o feixe estão em fase) e colimada (propaga-se como um feixe de ondas praticamente paralelas).


Ondas mico-ondas

As micro-ondas são ondas eletromagnéticas com comprimentos de onda maiores que os dos raios infravermelhos, mas menores que o comprimento de onda das ondas de rádio variando o comprimento de onda, consoante os autores, de 1 m (0,3 GHz de frequência) até 1,0 mm (300 GHz de frequência) - intervalo equivalente às faixas UHF, SHF e EHF.

Nota: acima dos 300 GHz, a absorção da radiação eletromagnética pela atmosfera da Terra é tão grande que a atmosfera é praticamente opaca para as frequências mais altas, até que se torna novamente transparente na, assim chamada, "janela" do infravermelho até a luz visível.

Ondas satelite

Os satélites utilizados para telecomunicações ou transmissão de dados sob a forma digital encontram-se situados em órbitas geostacionárias, em torno do equador, a cerca de 30-40 Km da superfície terrestre. A comunicação com esses satélites implica antenas parabólicas, ou seja, dispositivos de transmissão e recepção capazes de efectuar: - os uplinks: as emissões da Terra para o satélite; - os downlinks: as recepções do satélite para a Terra. As ondas de satélite são utilizadas em comunicações intercontinentaisou abrangendo grandes distâncias geográficas e, normalmente, suportam uma largura de banda elevada (da ordem dos 500 MHz), embora estejam sujeitas a atrasos devido às grandes distâncias percorridas.

Ondas de radio

Ondas de rádio são radiações eletromagnéticas com comprimento de onda maior e frequência menor do que a radiação infravermelha. São usadas para a comunicação em rádios amadores, radiodifusão (rádio e televisão), telefonia móvel.

Nesta também estão incluídas as ondas do tipo VHF e UHF.

Um dos vários tipos de onda, as ondas hertzianas são popularmente conhecidas como ondas de rádio-frequência ou simplesmente ondas de rádio. Usadas, principalmente, em difusão de rádio, elas estão também presentes na difusão de televisão, em sistemas de comunicação terrestre ou via satélite, radionavegação, radiolocalização e diatermia

Cabos

Cabo Coaxial


Cabo coaxial (dois condutores com o mesmo eixo central) tem uma malha de fios metálicos envolvendo um fio central com um isolamento plástico entre eles e um revestimento plástico no lado externo. Esta mistura de camadas e a malha metálica tornam-no um cabo resistente a interferências externas (blindado), sendo portanto um tipo de cabo bastante robusto. É, assim, mais resistente a interferências e atenuações do que o cabo de par trançado. O cabo coaxial pode ser fino

- aproximadamente 0,5 (cm) de diâmetro

- denominado 10Base2 ou Thinnet;

ou grosso

- aproximadamente 1 (cm) de diâmetro - denominado 10Base5 (RG-213) ou Ethernet Standard - utilizado nas redes de barramento Thick Ethernet.

A distância máxima entre estações de trabalho, utilizando o cabo fino, é de 185 metros.










Cabo Coaxial Fino

O cabo coaxial fino, também conhecido como cabo coaxial banda base ou 10Base2, é utilizado para transmissão digital e possui impedância característica geralmente de Zo=50 ohms. É o meio mais largamente empregado em redes locais.
As principais características de cabos coaxiais do tipo banda base, de impedância característica de Zo=50 ohms, utilizados em redes locais são :


1. distância máxima : 185 metros;
2. transmissão em banda base, código Manchester, em modo half-duplex;
3. taxas de 10 a 50 Mbps;
4. topologia mais usual : barra;
5. tempo de trânsito : 4 a 8 ns/m.


O cabo coaxial fino é mais maleável e, portanto, mais fácil de instalar. Em comparação com o cabo coaxial grosso, na transmissão em banda base, o cabo de 50 ohms sofre menos reflexões devido as capacitâncias introduzidas na ligação das estações ao cabo, além de possuir uma maior imunidade a ruídos electromagnéticos de baixa frequência.
Apesar do cabo coaxial banda base ter uma imunidade a ruídos melhor do que o par trançado, a transmissão em banda larga fornece uma imunidade a ruído melhor do que em banda base.











Cabo Coaxial Grosso


O cabo coaxial grosso, também conhecido como cabo coaxial de banda larga ou 10Base5, é utilizado para transmissão analógica. O cabo coaxial grosso, possui uma blindagem geralmente de cor amarela. Seu diâmetro externo é de aproximadamente 0,4 polegadas ou 9,8 mm.
Em redes locais, o cabo é utilizado fazendo uma divisão da banda em dois canais ou caminhos :



1. caminho de transmissão ( Inbound);
2. caminho de recepção (Outbound).
As principais características de redes locais com cabo coaxial de banda larga são as seguintes :
1. aplicação em redes locais com integração de serviços de dados, voz e imagens;
2. redes locais de automação de escritórios com integração de serviços.





Uma diferença fundamental entre os cabos coaxiais de banda base e banda larga é que sistemas em banda larga necessitam de amplificadores analógicos para amplificar periodicamente o sinal. Esses amplificadores só transmitem o sinal em um sentido; assim, um computador enviando um pacote não será capaz de alcançar os computadores a montante dele, se houver um amplificador entre eles. Para contornar este problema, foram desenvolvidos dois tipos de sistemas em banda larga : com cabo duplo e com cabo único.


Sistemas com cabo duplo possuem dois cabos idênticos dispostos em paralelo. Todos os computadores transmitem no cabo 1 e recebem no cabo 2.
Sistemas com cabo único é alocado bandas diferentes de frequência para comunicação, entrando e saindo por um único cabo


UTP (Categorias)

Categoria 1: Cabo telefónico tradicional (transferência de vozes, mas não de dados)
•Categoria 2: Transmissão dos dados a 4 Mbit/s máximo (ISDN). Este tipo de cabo é composto por 4 pares entrançados
•Categoria 3: 10 Mbit/s máximo. Este tipo de cabo é composto por 4 pares entrançados e 3 torções por pé
•Categoria 4: 16 Mbit/s máximo. Este tipo de cabo é composto por 4 pares entrançados de cobre
•Categoria 5: 100 Mbit/s máximo. Este tipo de cabo é composto por 4 pares entrançados de cobre
•Categoria 5e: 1000 Mbit/s máximo. Este tipo de cabo é composto por 4 pares entrançados de cobre

Fibra Optica (Vantagens)

mais baratas
mais finas
mais capacidade de transmissão
menor degradacao do sinal
leves

Para o 568-B, ele é mais utilizado no uso de cabos crossover;

3=branco com laranja
6=laranja
1=branco com verde
4=azul
5=branco azul
2=verde
7=branco com marrom
8=marrom

Para o 568-A, neste caso seria um exemplo de cabo normal onde às duas pontas possuem o mesmo padrão de cores salientando que também pode ser usado o outro padrão na construção de cabos comuns;

1=branco com verde
2=verde
3=branco com laranja
4=azul
5=branco azul
6=laranja
7=branco com marrom
8=marrom